
Chapitre 3 : Les boucles

1. La boucle TANT QUE
Cette boucle permet de répéter un ensemble d’instructions tant qu’une condition reste vraie. Elle teste la
condition avant chaque itération.
Tant que condition faire
 Instruction
Fin tant que

Traduction en C++ :
while (condition) {
 instruction;
}

2. La boucle FAIRE...TANT QUE
Cette boucle exécute d’abord le bloc d’instructions, puis vérifie la condition à la fin. Elle est donc toujours
exécutée au moins une fois.
Faire
 Instruction
Tant que condition

Traduction en C++ :
do {
 instruction;
} while (condition);

3. La boucle POUR
Cette boucle est utilisée lorsque le nombre d’itérations est connu à l’avance. Elle permet d’initialiser, de
tester et de faire évoluer une variable de contrôle.
Pour indice allant de VD à VF faire
 Instruction
Fin pour

Traduction en C++ :
for (initialisation; condition; évolution) {
 instruction;
}

Exercice 1 : Liste des diviseurs d’un entier
Écrire un algorithme, un programme en C, et un développement PHP permettant de saisir un entier et
d’afficher la liste de ses diviseurs.

Algorithme :
Algo : diviseurs
Déclaration : nb, div : entier
Début
 Afficher("Donner un entier :")
 Saisir(nb)
 Pour div allant de 1 à nb faire
 Si nb modulo div = 0 Alors
 Afficher("Diviseur : ", div)
 Fin si

 Fin pour
Fin diviseurs

Traduction en C++ :
#include <stdio.h>
int main() {
 int nb, div;
 printf("Donnez un entier : ");
 scanf("%d", &nb;);
 for (div = 1; div <= nb; div++) {
 if (nb % div == 0) {
 printf("\nDiviseur : %d", div);
 }
 }
 return 0;
}

Exercice 2 : Nombres parfaits entre deux bornes
Écrire un algorithme, un programme C et un développement PHP permettant de déterminer tous les
nombres parfaits compris entre deux bornes entières saisies par l’utilisateur. Un nombre est dit parfait s’il
est égal à la somme de ses diviseurs (sauf lui-même). Exemple : 28 est parfait car 1 + 2 + 4 + 7 + 14 = 28.

