Chapitre 3 : Les boucles

1. La boucle TANT QUE

Cette boucle permet de répéter un ensemble d’instructions tant qu’'une condition reste vraie. Elle teste la
condition avant chaque itération.
Tant que condition faire
Instruction
Fin tant que

Traduction en C++:
while (condition) {
instruction;

}

2. Laboucle FAIRE.. TANT QUE

Cette boucle exécute d’abord le bloc d’instructions, puis vérifie la condition & la fin. Elle est donc toujours
exécutée au moins une fois.
Faire
Instruction
Tant que condition

Traduction en C++ :
do {

instruction;
} while (condition);

3. La boucle POUR

Cette boucle est utilisée lorsque le nombre d'itérations est connu a I'avance. Elle permet d'initialiser, de
tester et de faire évoluer une variable de contréle.
Pour indice allant de VD a VF faire
Instruction
Fin pour

Traduction en C++ :
for (initialisation; condition; évolution) {
instruction;

}

Exercice 1 : Liste des diviseurs d’'un entier

Ecrire un algorithme, un programme en C, et un développement PHP permettant de saisir un entier et
d’afficher la liste de ses diviseurs.

Algorithme :
Algo : diviseurs
Déclaration : nb, div : entier
Début
Afficher("Donner un entier :")
Saisir(nb)
Pour div allant de 1 a nb faire
Si nb modulo div = 0 Alors
Afficher("Diviseur : ", div)
Fin si

Fin pour
Fin diviseurs

Traduction en C++ :
#include <stdio.h>
int main() {
int nb, div;
printf("Donnez un entier : ");
scanf("%d", &nb;);
for (div = 1; div <= nb; div++) {
if (nb % div == 0) {
printf("\nDiviseur : %d", div);
}
}

return O;

}

Exercice 2 : Nombres parfaits entre deux bornes

Ecrire un algorithme, un programme C et un développement PHP permettant de déterminer tous les
nombres parfaits compris entre deux bornes entieres saisies par I'utilisateur. Un nombre est dit parfait s'il
est égal a la somme de ses diviseurs (sauf lui-méme). Exemple : 28 est parfaitcar 1 +2 + 4 + 7 + 14 = 28.

